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Generalized entropy-based criterion for consistent testing
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Through the use of a recently introduced, nonextensive, entropy, we generalize that of Kullback and Leibler
@Ann. Math. Stat.22, 79 ~1961!# and study its properties. This in turn enables the proposal of a consistent
criterion for testing relevant hypotheses such as the independence of random variables. Straightforward appli-
cations are shown to be possible for~physical, geophysical, economic, and biological! time series.
@S1063-651X~98!03808-2#

PACS number~s!: 05.20.2y, 05.40.1j, 02.50.Wp
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The problem of consistent testing, i.e.,discrimination be-
tween two hypotheses, is a central one in as varied areas
physics ~e.g., in high-energy elementary particles expe
ments!, geophysics~e.g., rainfall times series and El Nin˜o
climatological phenomena!, economics~e.g., degree of cor-
relation in time series of quantities of financial interest!, and
biology ~e.g., correlations in nucleotides of DNA chains a
cardiological and electroencephalographic rhythms!, just to
mention a few. Nonparametric testing is of course a v
well justified one and, on an entropy basis, has been
posed and used by several authors@1–3#. Several years ago
Robinson@4# used the Kullback-Leibler measure of inform
tion @5# @which is based on the Boltzmann-Gibbs-Shann
~BGS! entropy# to make an elegant discussion ofindepen-
dence versus dependencein time series of~daily, weekly,
and monthly! exchange rates of several important currenc
against the U.S. dollar. More precisely, he used data of
Bank of England covering the period 2 January 1978 thro
28 June 1985. It is probably unnecessary to say that phys
geophysical, biological, and other time series could usef
be processed in the same manner.

On a quite different vein, we proposed several years
@6# a generalization of the usual Boltzmann-Gibbs statist
mechanics, hence of thermodynamics itself. This genera
tion addressesnonextensivesystems~long-range interactions
long-range microscopic memory, fractal or multifractal re
evant space-time, etc.! and is based on the entropic for
@written here for a continuous random variable characteri
by the probability distributionp(x)#:

Sq~p![2E dx p~x!
@p~x!#q2121

q21

52E dx@p~x!#q
@p~x!#12q21

12q

3S E dx p~x!51;qPRD , ~1!

which „using @p(x)#q21;11(q21)lnp(x)… recovers the
usual BGS entropyS1(p)[2*dx p(x)ln p(x) in the limit
q→1. The entropic indexq characterizes the degree of no
extensivity reflected in the~easily verified! pseudoadditivity
property Sq(A1B)5Sq(A)1Sq(B)1(12q)Sq(A)Sq(B),
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whereA andB are twoindependentsystems in the sense tha
the probability distribution ofA1B factorizesinto those of
A and ofB.

This generalization retains much of the formal structure
the standard theory such as the Legendre thermodyna
structure,H theorem, Onsager reciprocity theorem, Krame
and Wannier relations, Bogolyubov inequality, and therm
dynamic stability, among others@6,7#, and has been applie
to many anomalous physical systems. Within a long list
may mention Le´vy and correlated anomalous diffusions~see
@8# and references therein!, stellar polytropes@9,10#, pure-
electron plasma two-dimensional turbulence@10#, solar neu-
trinos @11#, anomalous phonon-electron thermalization
ion-bombarded solids@12#, peculiar velocities of galaxies
@13#, inverse bremsstrahlung in plasma@14#, cosmology@15#,
nonlinear dynamical low-dimensional~at the edge of chaos!
@16# as well as high-dimensional~at self-organized criticality
@17#! @18# dissipative systems, long-range-interacting fluid
and magnets@19#.

The aim of the present work is to show how these ide
can be used to propose, along Robinson’s lines, a genera
consistent testing, which could be useful for handling a gr
variety of problems. Let us first recall the Kullback-Leible
measure of information~or cross entropyor relative entropy
or mutual information!

I 1~p,p0![E dx p~x!ln
p~x!

p0~x!
52E dx p~x!ln

p0~x!

p~x!
,

~2!

wherep0(x) is the so-calledreference~or default! distribu-
tion ~uniform, Gaussian, Lorentzian, and Poisson distrib
tions are common choices! and the meaning of the subinde
1 will become transparent in a little while. By using th
ln r>12(1/r ) @r[p(x)/p0(x).0#, it is easily seen that
this quantity satisfies

I 1~p,p0!>0 ;~p,p0!. ~3!

I 1(p,p0)50 if and only if p5p0 almost everywhere. Prop
erty ~3! must be emphasized since it constitutes the v
basis forconsistencyof the present nonparametric testin
Indeed,I 1(p,p0) can be used as adistanceof p with regard
to p0 @notice that, unlessp5p0, generically I 1(p,p0)
ÞI 1(p0 ,p), a property to which we shall return later on#.
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Another important property ofI 1(p,p0) is that it is form
invariant under variable transformation. Indeed, if we p
form the variable transformationx5 f (y), the measure pres
ervation implies thatp(x)dx5 p̃(y)dy, where p̃(y) is the
new distribution law @and analogously forp0(x)#. Since
p/p05 p̃/ p̃0, I 1(p,p0)5*dy p̃„x(y)…ln@ p̃„x(y)…/ p̃0„x(y)…#
5I 1( p̃,p̃0), which proves the above-mentioned form inva
ance. As a last important property let us mention that, if
choose asp0(x) a uniformdistribution on a compact suppo
of lengthW, then it is straightforward to verify that

I 1~p,1/W!5 ln W2S1~p!, ~4!

which presents the Kullback-Leibler entropy as the depar
of the BGS entropy from its value at equiprobability.

The definition of I 1(p,p0) and the generalized entrop
form Sq(p) @Eq. ~1!# naturally lead to the generalization

I q~p,p0![E dx p~x!
@p~x!/p0~x!#q2121

q21

52E dx p~x!
@p0~x!/p~x!#12q21

12q
, ~5!

where we can immediately verify that the limitq→1 recov-
ers the standard Kullback-Leibler entropy~2!. Let us now
generalize~by following along the lines of@22#! the very
important property~3!. With r .0, we have that

r q2121

q21
>12

1

r
if q.0

512
1

r
if q50

<12
1

r
if q,0 ~6!

~for qÞ0, the equality holds if and only ifr 51). Conse-
quently, for, say,q.0, we have that

F p~x!

p0~x!G
q21

21

q21
>12

p0~x!

p~x!
; ~7!

hence

E dx p~x!

F p~x!

p0~x!G
q21

21

q21
>E dx p~x!F12

p0~x!

p~x! G
512150. ~8!

However, the left-hand side member of this inequality is p
cisely I q(p,p0). Consequently, Eqs.~6! imply

I q~p,p0!>0 if q.0

50 if q50

<0 if q,0. ~9!
-

e

re

-

For qÞ0, the equalities hold if and only ifp5p0 almost
everywhere. Equation~3!, as well as the above-mentione
form invariance, is thus generalized for arbitraryq. By per-
forming the transformationq2 1

2↔ 1
2 2q in the definition~5!

we can prove that

I q~p,p0!

q
5

I 12q~p0 ,p!

12q
. ~10!

Consequently, as a family of entropy-based testings, i
enough to considerq> 1

2 , for which

I q~p,p0!>0, ~11!

the equality holding if and only ifp5p0 almost everywhere.
The criterion indicated in Eq.~9! implies, for the particular
caseq5 1

2 ,

E dxAp~x!p0~x!<1. ~12!

This expression can be interpreted as the continuous ver
of the scalar product between two unitary vectors, nam
Ap(x) and Ap0(x), and is directly related to the so-calle
Fisher genetic distance@20#.

For the particular caseq52, the criterion~9! becomes

E dx@p~x!#2/p0~x!<1. ~13!

Also, except forI 1/2 ~and the trivial caseI 0), we easily see
that I q(p0 ,p)ÞI q(p,p0) unlessp5p0 almost everywhere.
Consequently, if for some reason we want areciprocal ‘‘dis-
tance’’ betweenp andp0, it might be convenient to define
symmetrized quantity such as

I q
S~p,p0![

1

2
@ I q~p,p0!1I q~p0 ,p!# ; ~14!

henceI q
S(p,p0)5I q

S(p0 ,p) ;(p,p0 ,q).
As a last property, let us generalize Eq.~4!. By choosing,

once again, asp0(x) the uniform distribution on a compac
support of lengthW, we easily establish that

I q~p,1/W!5
W12q21

12q
2Wq21Sq~p!. ~15!

Let us now adapt the main results of this paper to
problem of independence of random variables. Let us c
sider the two-dimensional random variablez[(x,y) and its
corresponding distribution function p(x,y) with
*dx dy p(x,y)51. The marginal distribution functions ar
then given byh1(x)[*dy p(x,y) and h2(y)[*dx p(x,y).
In this situation, the discrimination criterion for indepe
dence of course concerns the comparison ofp(x,y) with
p0(x,y)[h1(x)h2(y). The one-dimensional random var
ables x and y are independent if and only ifp(x,y)
5p0(x,y)@;(x,y)#. The criterion~11! becomes
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E dx dy p~x,y!

F p~x,y!

h1~x!h2~y!G
q21

21

q21
>0S q>

1

2D .

~16!

The evaluation of this quantity gives a satisfactory meas
of the degree of dependence betweenx andy; when and only
when it vanishes,x andy can be considered independent.
theq→1 limit, this criterion becomes the usual one~see, for
instance,@4#!

E dx dy p~x,y!ln p~x,y!2E dx h1~x!ln h1~x!

2E dy h2~y!ln h1~y!>0. ~17!

For q51/2 we have

E dx dyAp~x,y!h1~x!h2~y!<1. ~18!

The particular caseq52 becomes

E dx dy
@p~x,y!#2

h1~x!h2~y!
>1. ~19!

This can be considered as a satisfactory ‘‘quadratic’’ cr
rion, as opposed to the quantity basically introduced in@21#
~for the particular caseh15h2[h),

E dx dy@p~x,y!#22S E dx@h~x!#2D 2

. ~20!

Indeed~see also@4#!, this quantity has no definite sign and i
zero value does not guarantee an independence betwex
andy. In other words, it cannot be considered as an optim
criterion and could, in principle, very well be replaced by t
present criterion~19!.

If for a particular use we have reasons to prefer a sym
trized criterion, we can replace Eq.~16! by

I q
S
„p~x,y!,h1~x!h2~y!…>0 ~q> 1

2 !. ~21!

The generalization for an arbitrary numberd of variables
~with d>2) is straightforward:

I q
S
„p~x1 ,x2 , . . . ,xd!,p0~x1 ,x2 , . . . ,xd!…>0 ~q> 1

2 !,
~22!
re

-

n
l

e-

with

p0~x1 ,x2 , . . . ,xd!

[F E dx2dx3•••dxdp~x1 ,x2 , . . . ,xd!G
3F E dx1dx3•••dxdp~x1 ,x2 , . . . ,xd!G
3•••3F E dx1dx2•••dxd21p~x1 ,x2 , . . . ,xd!G . ~23!

The equality in Eq.~22! holds if and only if (x1 ,x2 , . . . ,xd)
can all be considered independent.

Let us finally make the bridge with a~physical, geophys-
ical, economical, and biological! time series denoted$j t%
with t50,1,2, . . . . One can, for instance, define@4# Xt
[ ln(j t /j t21) and usez[(x,y)[(Xt ,Xt21), i.e., a d52
problem. It is obvious that, according to the specific pro
lem, it might be useful to work on larger spaces~i.e., d
.2).

Summarizing, by following along the lines of the recent
formulated nonextensive entropy and thermostatistics@6#, we
have established, on firm mathematical grounds, ageneral-
ized criterion for consistent testing of independence betw
random variables, which we propose as a practical tool fo
analyzing data such as DNA or peptide sequences and
types of computational or experimental time series. The
sults depend upon the entropic indexq: It is expected that,
for every specific use, better discrimination will be achiev
with appropriate ranges of values ofq. This was indeed the
case of a recent wavelet-entropy analysis@23# of electroen-
cephalographic data of epileptic turtles and human patie
the best values for clinical analysis turned out to be in
neighborhood ofq55. The value ofq in the vicinity of
which the criterion will be more fruitful no doubt is relate
to the ~multi!fractal structure of the signal~s! under study,
which in turn reflects the deep microscopic or mesosco
~generically nonlinear! dynamics in the phase space of th
system. The ubiquitous, so-calledcomplex systemspossibly
are ideal candidates for a variety of applications. At t
present moment, the analysis along these lines of the El N˜o
data is in progress. Several interesting effects emerge
function of q that will be presented elsewhere.
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